##### Ph: +91...4949 Email: info@hmi-tech.net
Topic:
Topics matching: Quiz size: Choices: Color scheme: flipquiz:
Quiz on 'Pari2'

### Title: Quiz on 'Pari2'

Question 1
Choices
1. a `and' b, a `or' b, `not' a
1a^b
2lift(x)
3znprimroot(p)
4a &&b, a||b, !a
5(1/a)%n
2. find a primitive root modulo p
1E=ellinit([0,0,0,a,b])
2a^b
3binary(a)
4znprimroot(p)
5(1/a)%n
1chinese(x,y)
2lift(x)
3##
4(1/a)%n
5/* */ and \\
4. multiplicative order of x in Zn
1(1/a)%n
2lift(x)
3bittest(a,n)
4##
5znorder(x)
5. is p a prime integer?
1\q or quit
2nextprime(a), precprime(a)
3isprime(p)
4binary(a)
5znorder(x)
Question 6
Choices
6. integer quotient when a is divided by b
1a &&b, a||b, !a
2nextprime(a), precprime(a)
3Mod(a,n)
4a\b
5bittest(a,n)
7. To start and stop a log file of your session.
1Use \l
2(1/a)%n
3Mod(a,n)
4ab, a<=b, a!=b a==b
5isprime(p)
8. chinese remainder theorem applied to x and y (note)
1a^b
2(1/a)%n
3znorder(x)
4a\b
5chinese(x,y)
9. binary expansion of a
1powermod(x,k,m)=lift(Mod(x,m)^k)
2chinese(x,y)
3/* */ and \\
4binary(a)
5Mod(a,n)
10. first prime larger or smaller than a
1a\b
2nextprime(a), precprime(a)
3a=b
4? eg. ?bezout
5znprimroot(p)
Question 11
Choices
11. time of last computation
1bittest(a,n)
2##
3a=b
4/* */ and \\
5(1/a)%n
12. inverse of the integer a modulo n gcd(a,n)=1
1binary(a)
2znorder(x)
3##
4a^b
5(1/a)%n
13. timer
1nextprime(a), precprime(a)
2chinese(x,y)
3a=b
4? eg. ?bezout
5#
14. assign a the value b
1Mod(a,n)
2isprime(p)
3? eg. ?bezout
4a\b
5a=b
15. compare a to b
1a &&b, a||b, !a
2/* */ and \\
3isprime(p)
4Use \l
5ab, a<=b, a!=b a==b
Question 16
Choices
16. convert an element x of Zn to an integer (see note)
2chinese(x,y)
3a^b
4lift(x)
5binary(a)
17. define powermod function
1isprime(p)
2powermod(x,k,m)=lift(Mod(x,m)^k)
3#
4? eg. ?bezout
5nextprime(a), precprime(a)
18. a raised to the power b (see powermod below)
1#
2a^b
3##
4znorder(x)
5lift(x)
19. help
1a^b
2a\b
3E=ellinit([0,0,0,a,b])
4powermod(x,k,m)=lift(Mod(x,m)^k)
5? eg. ?bezout
20. add/subtract z and w on elliptic curve E
1a=b